Analyzing human driving data an approach motivated by data science methods
نویسندگان
چکیده
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Visual Methods for Analyzing Human Health Data
Day by day, large volumes of health-related data are collected by physicians, health insurance companies, and public authorities. These data are potentially useful to understand the history, monitor the present, and predict the future of the health situation in order to ensure a high level of human health protection. To take advantage of this potential, it is necessary to analyze the data. Howe...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملAnalyzing Tourism Industry Effect on Employment among Provinces by Spatial Econometric Panel Data Approach
Due to the capacity of adjacent regions interactivity in economic field, industry development in a region not only increases the employment of that region but also it may increase the employment of adjacent regions by expanding related industries. So in this study after spatial effect test, the effect of tourism industry development on employment studied in the form of spatial dynamic panel dat...
متن کاملIdentifying effective interpretation methods for magnetic data by profiling and analyzing human data interactions
Geoscientific data interpretation is a highly subjective and complex task because human intuition and biases play a significant role. Based on these interpretations, however, the mining and petroleum industries make decisions with paramount financial and environmental implications. To improve the accuracy and efficacy of these interpretations, it is important to better understand the interpreta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos, Solitons & Fractals
سال: 2016
ISSN: 0960-0779
DOI: 10.1016/j.chaos.2016.02.008